# Video Loop









# Newtown Creek Combined Sewer Overflow Long Term Control Plan

# **Public Kickoff Meeting**

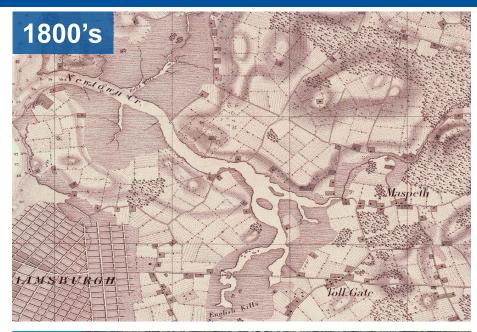
Location: Newtown Creek WWTP

Date: November 15, 2016

# Agenda



|   | Topic                                                            | Speaker        |
|---|------------------------------------------------------------------|----------------|
| 1 | Welcome & Introductions                                          | Mikelle Adgate |
| 2 | Waterbody & Watershed Characteristics and Water Quality Sampling | Keith Mahoney  |
| 3 | Water Quality Improvement Projects                               |                |
|   | Grey Infrastructure                                              | Keith Mahoney  |
|   | Green Infrastructure                                             | Pinar Balci    |
| 4 | LTCP Modeling & Alternative Development Process                  | Keith Mahoney  |
| 5 | Next Steps                                                       | Mikelle Adgate |
| 6 | Discussion and Q&A Session                                       | All            |




# **Welcome & Introductions**

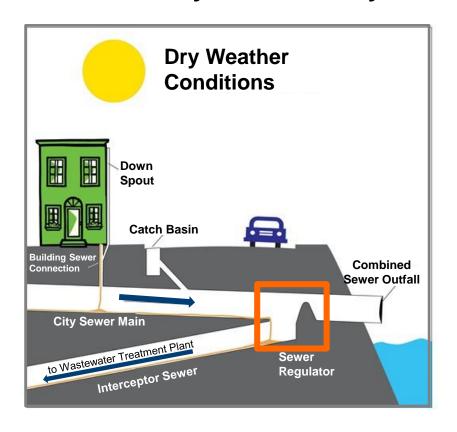
Mikelle Adgate
Director of Stormwater Management Outreach
DEP – BPA

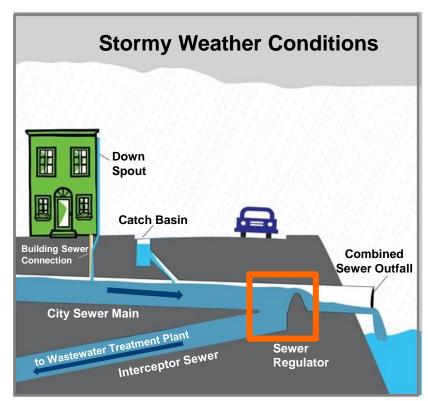
#### **Newtown Creek: Historical Context**





➤ The shoreline of Newtown Creek in the 1800's – the system has since been drastically altered.





Urban development throughout the decades has led to a highly impervious watershed in Newtown Creek.

# What is a Combined Sewer Overflow (CSO)?



NYC's sewer system is approximately 60% combined, which means it is used to convey both sanitary and storm flows.





- 65% to 90% of combined sanitary & storm flow is captured at treatment plants.
- When the sewer system is at full capacity, a diluted mixture of rain water and sewage may be released into local waterways. This is called a combined sewer overflow (CSO).

#### How does rainfall affect CSOs?



- Rainfall characteristics that trigger a CSO event at Newtown Creek:
  - 0.05 to 0.27-inch of constant rainfall over a period of 2 to 10 hours
  - Of the average 100 rainfall events per year about 63% may trigger a CSO at Newtown Creek





Photo Credit: Baptisete Pons https://www.flickr.com/photos/bpt/2882285636/

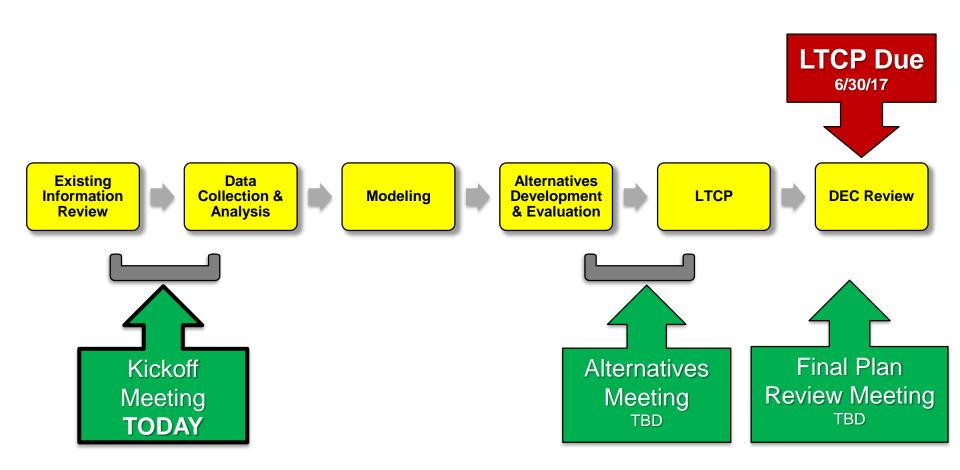
#### What is a LTCP and CSO Consent Order?



#### **Long Term Control Plan (LTCP)**

# identifies appropriate CSO controls to achieve applicable water quality standards

consistent with the Federal CSO Policy and Clean Water Act


#### **CSO Consent Order**

an agreement between NYC and DEC that settles past legal disputes without prolonged litigation

DEC requires DEP to develop LTCPs and mitigate CSOs

#### LTCP Process and Public Involvement





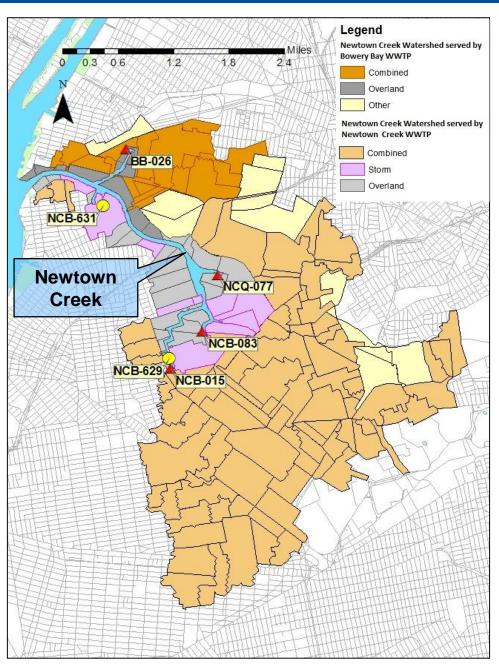
ONGOING PUBLIC / STAKEHOLDER INPUT



# **Questions?**



# Waterbody & Watershed Characteristics and Water Quality Sampling


Keith Mahoney, P.E.

Director of Water Quality Planning

DEP – BEDC

## Newtown Creek Drainage Area





#### > 5 Urban CSO Tributaries

- English Kills
- Dutch Kills
- East Branch
- Whale Creek
- Maspeth Creek

#### > Sewer System

- · Sewersheds:
  - Newtown Creek (NC): 16,256 acres
  - Bowery Bay (BB): 16,105 acres
- 4 CSO Outfalls (▲)
- 2 DEP owned MS4 Outfalls (O)

# Annual Wet-Weather Discharge Volume

- 1,176 MG CSO (85%)
- 204 MG MS4 Direct Drainage and Stormwater (15%)

|                           | Drainage Area |
|---------------------------|---------------|
| Total Acres               | 6,972         |
| Served by Combined Sewers | 68%           |

## Water Quality Standards & LTCP Goals



#### **CLASS SD**

Fish Survival

The **best usage** of Class SD water is **fishing**. These waters shall be suitable for fish, shellfish, and wildlife survival. In addition, the water quality shall be suitable for primary and secondary contact recreation, although other factors may limit the use for these purposes.

| Parameter        | Criteria*                                                              | DEC Water Quality Parameter<br>Reference                                           |
|------------------|------------------------------------------------------------------------|------------------------------------------------------------------------------------|
| Fecal Coliform   | Monthly Geometric Mean<br>≤ 200 col/100 mL                             | <ul><li>New York Codes, Rules and Regulations</li><li>(NYCRR Part 703.4)</li></ul> |
| Total Coliform   | Monthly Geometric Mean<br>≤ 2,400 col/100 mL<br>80% ≤ 5,000 col/100 mL | <ul><li>New York Codes, Rules and Regulations</li><li>(NYCRR Part 703.4)</li></ul> |
| Dissolved Oxygen | ≥ 3.0 mg/L<br>(acute, never less than)                                 | <ul><li>New York Codes, Rules and Regulations</li><li>(NYCRR Part 703.3)</li></ul> |

<sup>\*</sup> EPA has also proposed a potential future RWQC for enterococcus: 30-Day Rolling GM ≤ 30 col/100 mL.

#### > CSO LTCP Goals and Targets:

- > Annual and Seasonal Bacteria Compliance
- > Annual Dissolved Oxygen Compliance
- ➤ Time to Recovery for Bacteria of < 24 hours
- > Floatables Control

# Ongoing Receiving Water Sampling Programs





| Program                                       | Sampling                                | #of Sampling | Parameters |          |          |
|-----------------------------------------------|-----------------------------------------|--------------|------------|----------|----------|
| i rogram                                      | Frequency                               | Locations    | Fecal      | Entero   | *YSI     |
| Harbor Survey Monitoring                      | Monthly (Oct – May) Weekly (Jun – Sept) | 4            | <b>√</b>   | <b>√</b> | <b>✓</b> |
| <ul><li>Sentinel</li><li>Monitoring</li></ul> | Quarterly                               | 4            | 1          |          |          |

# LTCP Sampling & Monitoring Programs



#### Receiving Water

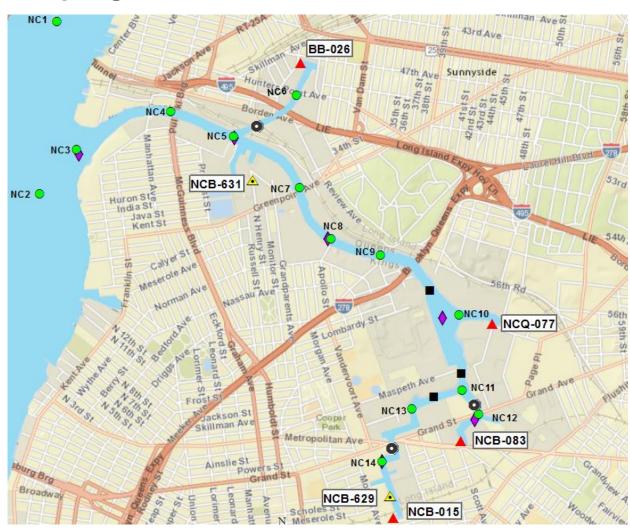
- 14 locations
- Four 4-day events
- Fecal, Entero, YSI, TSS

#### ▲ CSO / ▲ MS4 Sampling

- 4 CSO, 2 MS4 locations
- 4 wet weather events
- Fecal, Entero, YSI, TSS, CBOD, Nitrogen

#### **♦** SOD

- 6 locations
- 2 dry & 2 wet-weather events


#### ■ Data Sondes / ■ ADCPs

- 3 locations
- Continuous over 60 days
- Temperature, DO, Salinity

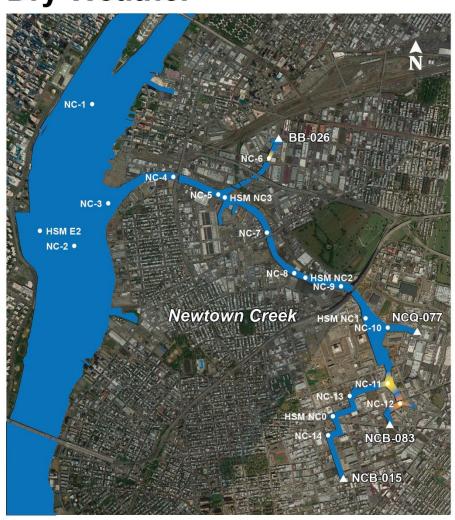
#### **Flow Monitoring**

- 3/1/2014 3/31/2015
- 5 locations
- Continuously monitored
- Depth & Velocity measurements

#### **Sampling Period:** 7/1/2016 – 10/31/2016



# Fecal Coliform Sampling – Geometric Means

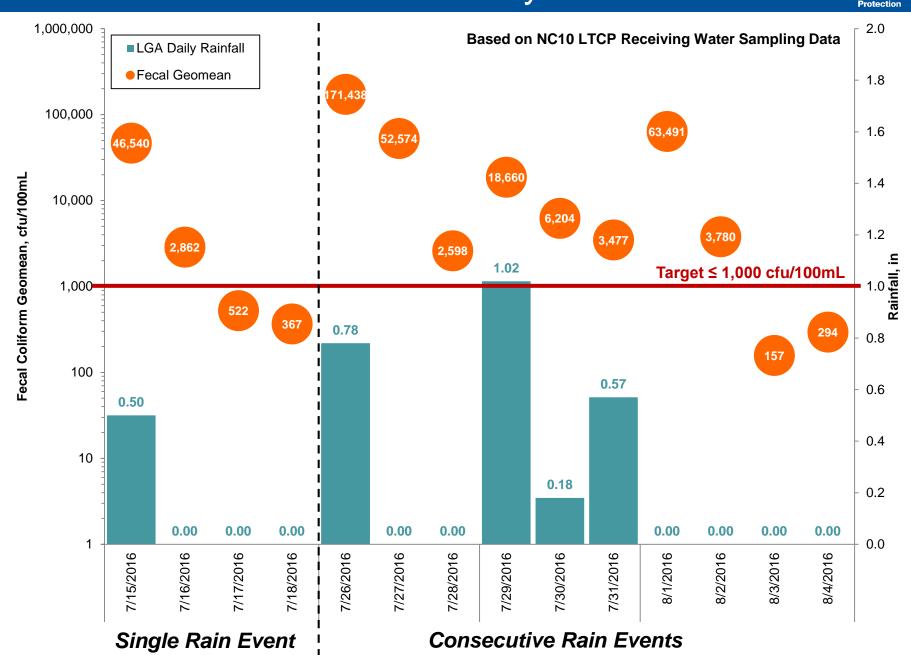



#### January 1, 2016 to September 30, 2016

LTCP: ~6 Dry and ~38 Wet samples per location HSM: ~14 Dry and ~28 Wet samples per location

# Scale (# col/100 mL) 0-200 201-500 501-1000 >1000

#### **Dry Weather**




#### **Wet Weather**

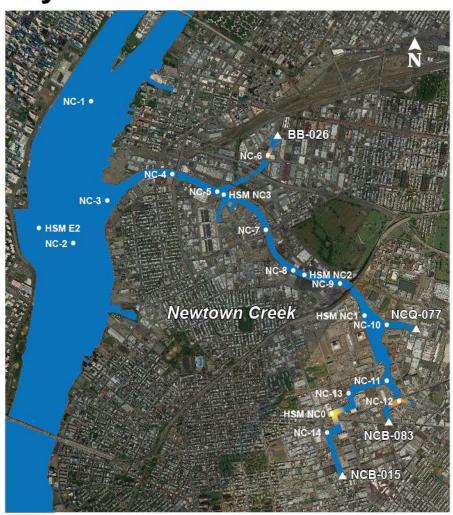


# Fecal Coliform Recovery Over Time





# Enterococci Sampling – Geometric Means

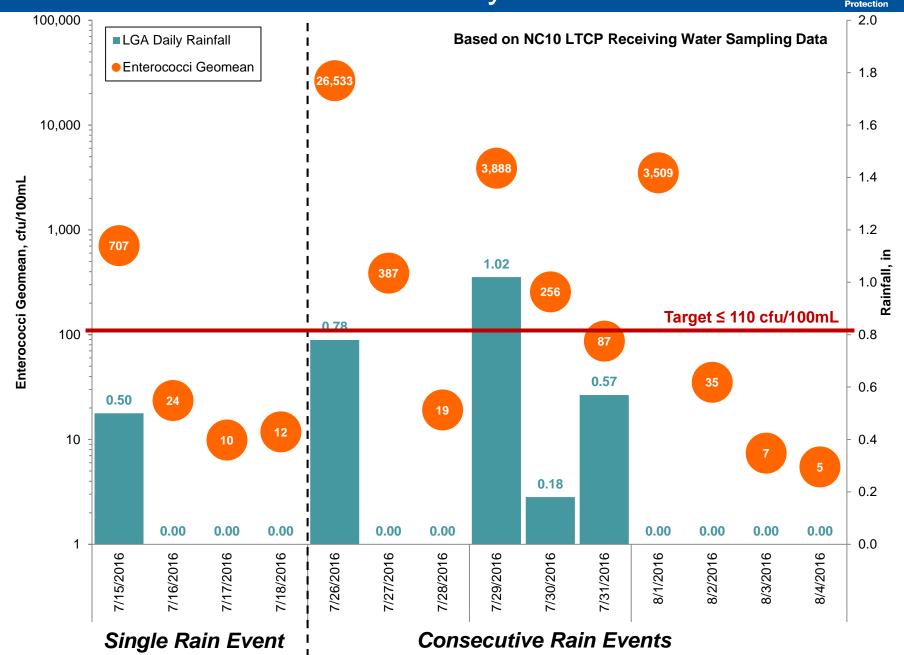



#### January 1, 2016 to September 30, 2016

LTCP: ~6 Dry and ~38 Wet samples per location HSM: ~14 Dry and ~28 Wet samples per location



#### **Dry Weather**




#### **Wet Weather**

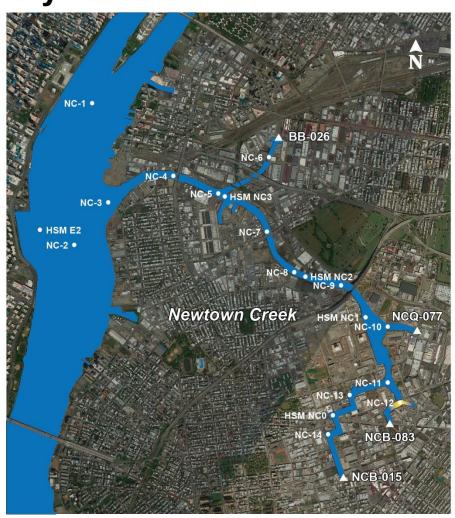


# Enterococci Recovery Over Time

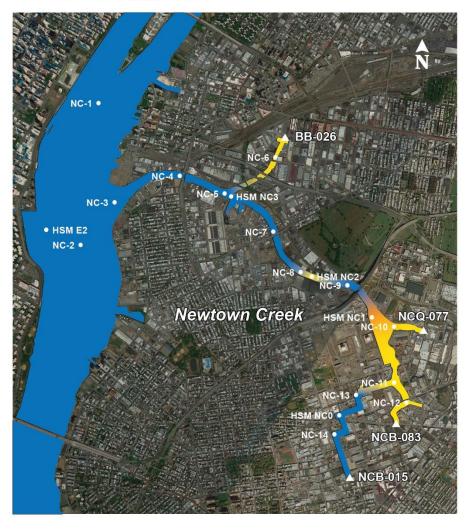




# Dissolved Oxygen Sampling – 5th Percentile Values



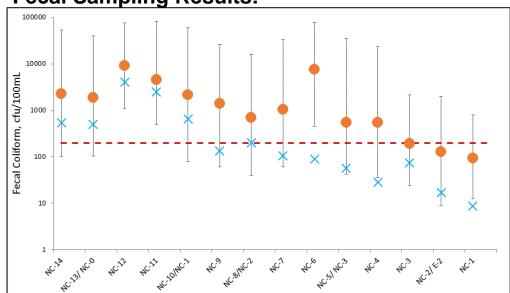

#### January 1, 2016 to September 30, 2016


LTCP: ~6 Dry and ~38 Wet samples per location HSM: ~14 Dry and ~28 Wet samples per location

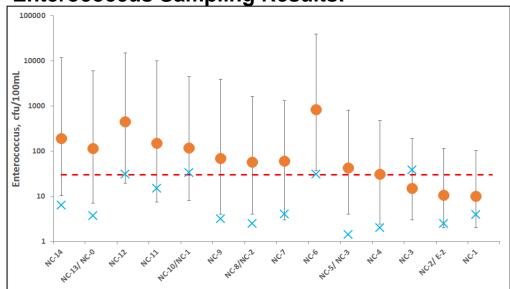


#### **Dry Weather**




#### **Wet Weather**




# Canoe Excursion Sampling Results



**Fecal Sampling Results:** 



**Enterococcus Sampling Results:** 





- ➤ On July 20<sup>th</sup>, 2016, DEP joined the Newtown Creek Alliance for a canoe tour of Newtown Creek
- ➤ Sampling results from this excursion are within the ranges observed under the LTCP / HSM sampling programs
- GM of LTCP/HSM Sampling Results (1/1/16 9/30/16)
- X Canoe Excursion Results (7/20/16) \*Prior rainfall on 7/14 of 0.15-in

#### · Primary Contact Criteria

- Fecal Monthly GM ≤ 200 cfu/100 mL
- Entero 30-day Rolling GM ≤ 30 cfu/100 mL



# **Questions?**



# Water Quality Improvement Projects Grey and Green Infrastructure

Keith Mahoney, P.E.

Director of Water Quality Planning

DEP – BEDC

Pinar Balci Assistant Commissioner DEP – BEPA

# Newtown Creek: CSO Mitigation Projects



|                 | Recommended Project                                | Construction<br>Cost | Status                          |  |
|-----------------|----------------------------------------------------|----------------------|---------------------------------|--|
| 1               | Brooklyn/Queens Pump Station at Newtown Creek WWTP | \$300 M              | Substantially Completed in 2013 |  |
| 2               | Bending Weirs and Underflow Baffles                | \$42 M               | In-Construction thru 2017       |  |
| 3               | In-Stream Aeration Projects (4)                    | \$60 M¹              | In-Construction thru 2020       |  |
| 4               | Built and Planned GI Projects                      | \$45 M <sup>2</sup>  | Ongoing Design and Construction |  |
| Total = \$447 M |                                                    |                      |                                 |  |

<sup>1)</sup> Cost pending for Maspeth Creek aeration.

<sup>2)</sup> Cost to date, more GI projects may be pending.



### Brooklyn/Queens PS at Newtown Creek WWTP

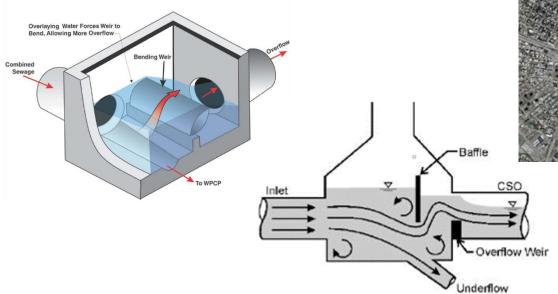


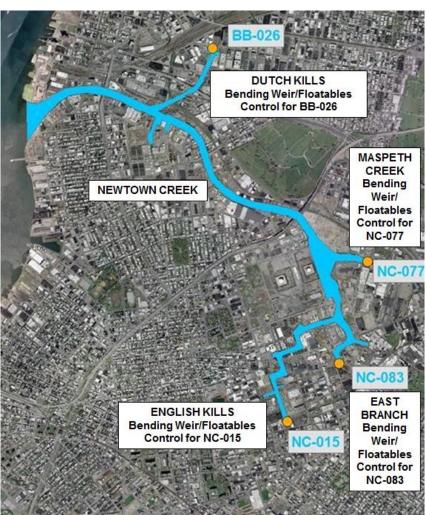
- Continued operation of the Brooklyn/Queens Pumping Station (PS) at NC WWTP
- PS Wet Weather Capacity = 400 MGD
- PS Upgraded in 2013: ~\$300 M

(includes 5 new MSPs, headworks upgrade, in-line storage facility, odor control)






### Bending Weir and Underflow Baffles



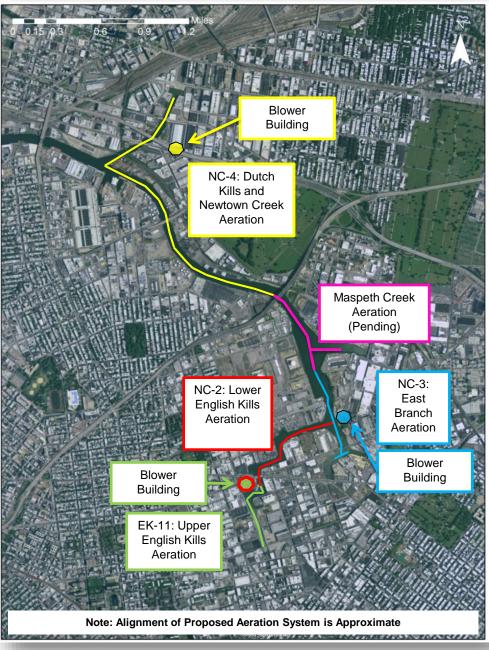

- Construction Cost: \$42 M
- Construction Completion: Dec. 2017
- Volume Reduction: 62 MGY
- Provides Floatables Control

Typical Bending Weir

- Being installed at 4 locations (O):
  - B-01 (NCB-015), NCQ-01 (NCQ-077), NCB-2 (NCB-083), BB-L4 (BB-026)








# **In-Stream Aeration Projects**





| Contract | Aeration<br>Location             | Construction<br>Completion                                  | Cost       |  |
|----------|----------------------------------|-------------------------------------------------------------|------------|--|
| EK-11    | Upper English Kills              | Dec. 2008                                                   | \$9.0 M    |  |
| CSO-NC-2 | Lower English Kills              | Jan. 2014                                                   | \$2.2 M    |  |
| CSO-NC-3 | East Branch                      | Jun. 2018                                                   | \$18.0 M   |  |
| CSO-NC-4 | Dutch Kills and<br>Newtown Creek | Dec. 2020                                                   | \$30.8 M   |  |
| Pending  | Maspeth Creek                    | Project on-hold per results of clean-up in the Superfund ar | operations |  |





# Green Infrastructure in New York City

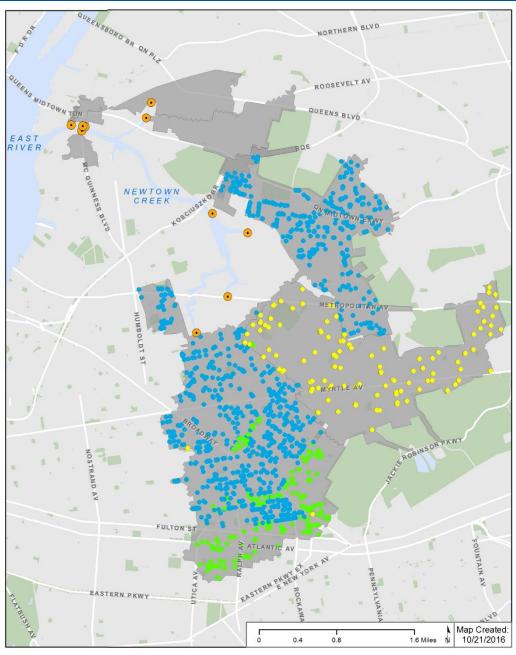


➤ Green Infrastructure (GI) collects stormwater runoff from impervious surfaces, such as streets and roofs, reducing flow to sewers

➤ \$1.5 billion committed for GI Citywide to manage 1" of stormwater runoff from 10% of impervious combined sewered areas by 2030

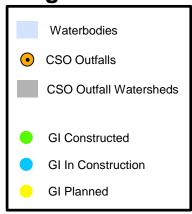





- DEP will meet this goal through:
  - Area-Wide Contracts
  - Public Property Retrofits
  - Grant Program for Private Property Owners
  - Stringent Detention Rule for New Development






# Newtown Creek Built and Planned GI Projects





- More than 1,300 GI assets within streets, parks, and schools
- ▶ 98% are ROW Rain Gardens (aka bioswales)

#### Legend



# Public Property Retrofits in Newtown Creek





| Project Status | Parks/<br>Playgrounds | Public<br>Schoolyards | NYCHA Housing<br>Developments | Total |
|----------------|-----------------------|-----------------------|-------------------------------|-------|
| Potential      | 1                     | 0                     | 3                             | 4     |
| Preliminary    | 12                    | 6                     | 6                             | 24    |
| Schematic      | 4                     | 2                     | 0                             | 6     |
| Constructed    | 0                     | 2                     | 1                             | 3     |
| Total          | 17                    | 10                    | 10                            | 37    |

# GI Opportunities for Private Property Owners



#### Green Infrastructure Grant Program:

DEP provides funding for the design and construction costs of green infrastructure on private property in combined sewer areas of the City.

#### Green Roof Tax Abatement:

The City provides a one-year property tax abatement for private properties that install green roofs. The abatement value is \$5.23 per square foot (up to the lesser of \$200,000 or the building's tax liability) and is available through March 15, 2018.

#### New Private Incentive Program:

DEP is currently developing a new private property green infrastructure retrofit initiative to augment its current efforts on stormwater management on private property. There will be an RFI released on 9/19 in which the Agency is seeking ideas on innovative program management structures for this new initiative.

#### > 2012 Stormwater Rule:

In 2012, DEP amended the allowable flow rate of stormwater to the City's combined sewer system for new and existing development. Site Connection Proposals may include green infrastructure technologies to meet the new allowable rate.

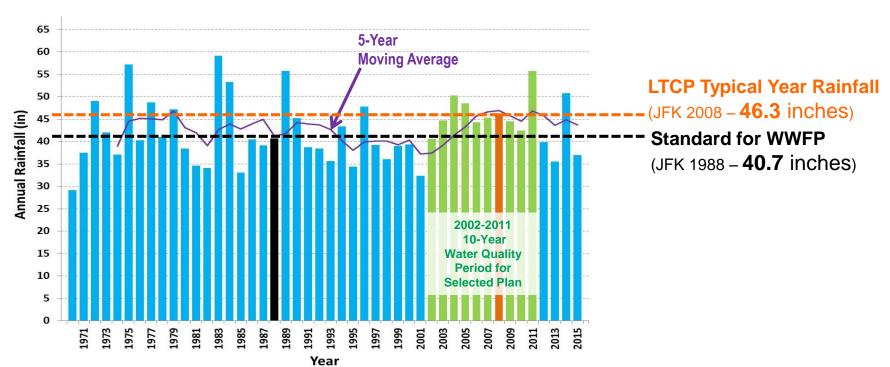


# **Questions?**



# LTCP Modeling and Alternatives Development Process

Keith Mahoney, P.E.


Director of Water Quality Planning

DEP – BEDC

# Model Calibration Inputs and Assumptions



- Landside Model calibrated based on flow monitoring data, gauge adjusted radar rainfall data, and satellite flyover impervious data
- > Water Quality Model calibrated with Harbor Survey and LTCP sampling data
- Calibrated modeling inputs and assumptions include:
  - Committed CSO and BNR projects
  - 2040 sanitary flows and loads
  - JFK 2008 "Typical Year Rainfall" for Alternative Analysis
  - JFK 10-yr data (2001 to 2011) for baseline and selected alternatives



# LTCP Baseline Conditions Modeling



- Continued operation of Brooklyn PS @ NC WWTP at up to 400 MGD during wet weather
- Construction of Bending Weirs and Underflow Baffles at 4 Locations
- Construction of In-Stream Aeration

Committed Green Infrastructure in Newtown Creek watershed

**WWFP Plan** (\$402 M)<sup>1</sup> LTCP Baseline 3.2% Green

Infrastructure (\$45 M for 110 acres)<sup>2</sup>

<sup>1)</sup> Cost pending for Maspeth Creek aeration.

<sup>2)</sup> Cost to date, more GI projects may be pending

#### **CSO Control Evaluation Process**



- 1. Bacteria Source Component Analysis
  - > CSO, stormwater and direct drainage
- 2. Gap Analysis for Water Quality Standard (WQS) Attainment
  - Calculate bacteria and dissolved oxygen for:
    - Baseline Conditions
    - 100% CSO Control Conditions
- 3. Assess Levels of CSO Control Necessary to Achieve WQS
- 4. Identify Technologies to Cost-Effectively Achieve the Required Level of CSO Control

# ncreasing Sample **Technologies:**

**CSO Reduction Potentia** 

> Storage

> Treatment

> System **Optimization** 

> Source Control

# **CSO** Mitigation Toolbox



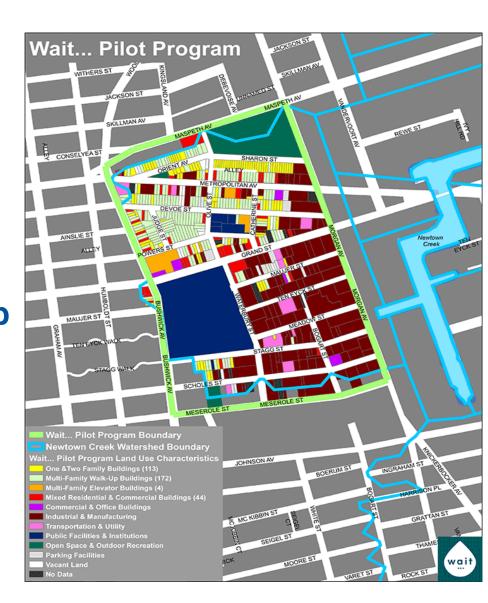
# INCREASING COMPLEXITY

| Source Control                         | Existing GI                                    | Additional GI                                                 | High Level Sewer Separation                  |  | ation                        |       |
|----------------------------------------|------------------------------------------------|---------------------------------------------------------------|----------------------------------------------|--|------------------------------|-------|
| System<br>Optimization                 | Fixed Weir                                     | Parallel<br>Interceptor /<br>Sewer                            | Control Gates  Station                       |  | Pump<br>Station<br>Expansion |       |
| CSO<br>Relocation                      | Gravity Flow<br>Tipping to Other<br>Watersheds | Pumping Station<br>Modification                               | Flow Tipping with Conduit/Tunnel and Pumping |  | nping                        |       |
| Water Quality / Ecological Enhancement | Floatables<br>Control                          | Environmental<br>Dredging                                     | Mechanical Aeration Flushing Tunnel          |  | ing Tunnel                   |       |
| Treatment<br>Satellite:                | Outfall<br>Disinfection                        | Retention Treatment Basin (RTB)  High Rate Clarification (HR0 |                                              |  |                              |       |
| Centralized:                           | WWTP Expansion                                 |                                                               |                                              |  |                              |       |
| Storage                                | In-System                                      | Shaft                                                         | Tank                                         |  | Т                            | unnel |



# **Questions?**




# How You Can Help & Next Steps

Mikelle Adgate
Director of Stormwater Outreach
DEP – BPA

# Wait...Water Quality Program



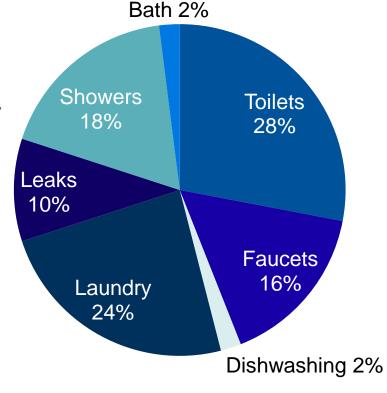
- Water quality program that encourages residential participants to postpone typical household water uses (i.e, laundry, dishwashing, etc.) during heavy storm
- Text 38671 with wait-nycdep start to join



# Wait... Pilot Program

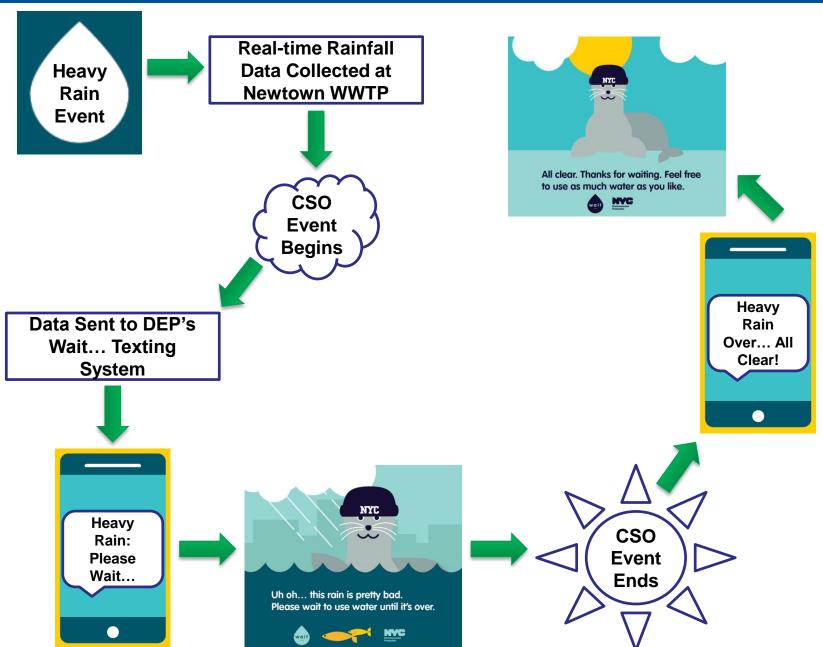











- Wait... is a water quality improvement pilot program that encourages residential participants to voluntarily postpone water use during combined sewer overflow (CSO) events
- Goal: increase capacity in combined sewer system during large storm events and reduce concentration of wastewater in CSOs
- Target: residential water uses individuals can choose to delay
- DEP is first water utility in US to pilot this type of behavior modification program
- Technical, creative and outreach components



# Wait... Pilot Program – How it Works





# Wait... Pilot Program – Preliminary Results



- Pilot monitoring phase: June 6 to November 30, 2016
- Number of pilot participants in Newtown Creek sewershed: 379
- Water consumption used as metric: if participants use less water during a CSO event, compared to what they normally use (baseline consumption), they "waited"
- Number of CSO events to date: 7
  - o Participants "waited" 4 out of 5 CSO events; analysis pending for 2 events

| Wait Pilot Program Preliminary Results and Data |                                          |  |  |  |  |
|-------------------------------------------------|------------------------------------------|--|--|--|--|
| CSO Event                                       | Percent Change from Baseline Consumption |  |  |  |  |
| #1                                              | 5% reduction                             |  |  |  |  |
| #2                                              | 2% reduction 🔱                           |  |  |  |  |
| #3                                              | 2% increase                              |  |  |  |  |
| #4                                              | 7% reduction 🔱                           |  |  |  |  |
| #5                                              | 10% reduction 🔱                          |  |  |  |  |
| #6                                              | Data/Analysis Pending                    |  |  |  |  |
| #7                                              | Data/Analysis Pending                    |  |  |  |  |



# **Questions?**

## **Next Steps**



- ➤ Newtown Creek LTCP Public Meeting #2, Spring 2017
  - LTCP Submittal to NYS DEC in June 2017

- Public Comments will be accepted through Dec. 15, 2016
  - There will be subsequent comment periods following the alternative and final plan review meetings.
- Comments can be submitted to:
  - New York City DEP at: <a href="mailto:ltcp@dep.nyc.gov">ltcp@dep.nyc.gov</a>

#### Additional Information & Resources



- Visit the informational tables tonight for handouts and poster boards with detailed information
- ➤ Go to <a href="https://www.nyc.gov/dep/ltcp">www.nyc.gov/dep/ltcp</a> to access:
  - LTCP Public Participation Plan
  - Presentation, handouts and poster boards from this meeting
  - Links to Waterbody/Watershed Facility Plans
  - CSO Order including LTCP Goal Statement
  - NYC's Green Infrastructure Plan
  - Green Infrastructure Pilots 2011 and 2012 Monitoring Results
  - NYC Waterbody Advisory Program
  - Upcoming meeting announcements
  - Other LTCP updates